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Abstract. Solvation of K+ in helium droplets is studied by classical simulation methods. We have previously
shown that additive potentials can be used to describe structures of helium droplets when an ionic species
is present. Here, we present an accurate ab-initio potential for the K+ – He interaction. Global minima
of KHe+

n for up to n = 70 are searched for employing Basin Hopping Monte Carlo simulations with a
random growth scheme. The extent of the solvation is analyzed. A clear formation of two shells with 15
and 23 atoms is detected.

PACS. 34.20.Cf Interatomic potentials and forces – 36.20.Ey Configuration (statistics and dynamics)

1 Introduction

Helium droplets are known to be the ultimate matrix for
the experiments at extremely low temperatures. These
ultracold homogeneous matrices are of great importance
since they facilitate the synthesis of new molecular com-
plexes [1]. They also serve as suitable containers for neu-
tral or charged atoms and molecules [2] and their absorp-
tion and emission spectra can be studied by laser-induced
fluorescence techniques [3]. In the recent years, the study
of ion containing helium droplets has become more im-
portant since they offer an opportunity to probe different
aspects of superfluidity [4], the microscopic interactions
between the charged impurity and the matrix and to
perform experiments for testing the accuracy of the mi-
croscopic theories. They are also known to undergo “elec-
trostriction” within the cluster and to give rise to regu-
lar patterns of solvent localization around the doping ion
known as “snowballs”.

The M+-Rg complexes (M = alkali metal, Rg = rare
gas atom) have been studied by various experimental tech-
niques [5]. They are of great interest as the fragmentation
products formed upon ionization of the droplets by elec-
tron impact just after immersing the impurity. The end
products are usually clusters containing the cation with a
few helium atoms attached to it. Even though these sys-
tems are composed of closed-shell singly charged cations
interacting with a bath of closed-shell atoms, there are
some interesting structural and dynamical questions as to
the possible formation of clear shell structures [4]. The
charge delocalization is very small so these clusters can
be understood in terms of the solvation of a cationic, well
localized region.
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Various interaction potentials for M+-Rg systems have
been obtained by experimental and theoretical means.
These functions usually consist of two components: (a) a
short range repulsive potential and (b) a long range attrac-
tive potential. The second term dominates the interaction
and can be described in terms of a charge(cation)-induced
multipole interaction.

Such characteristics of the interactions of M(Rg)+n
species allow us to pursue the possibility of using additive
potentials to elucidate the solvation of charged impurities
in helium droplets. Previously, we have shown that ad-
ditive potentials provide qualitatively correct information
on the structures of small LiHe+

n clusters [6,7]. The sim-
ilarities between structures obtained from fully quantum
mechanical calculations and those obtained from classical
optimization techniques further allow us to use classical
simulation techniques to obtain structural information of
larger clusters.

In this study, we computed an accurate interaction
potential for K+–He complex and utilized this potential
function to study the solvation shells in KHe+

n . Optimiza-
tions are carried out by a modified Basin hopping Monte
Carlo algorithm. A scheme is also developed to model the
growth of a cluster.

2 An outline of computational tools

2.1 K+–He interaction

The interaction potential energy curve for the diatomic
complex K+He is calculated by the Coupled-Cluster Sin-
gles Doubles including triple excitations non-iteratively
CCSD(T) with an aug-cc-pv5z quality basis set. This basis
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Fig. 1. Potential curve for the K+–He interaction.

was generated [8] by the augmentation with a large flexi-
ble valence basis sets and contraction of the effective core
potential (ECP10MWB) [9]. The calculations were carried
out with the MOLPRO software [10]. Basis set superpo-
sition errors are corrected with the counterpoise method.
The resulting potential is given in Figure 1.

The well depth and equilibrium internuclear separation
were found to be 185.5 cm−1 and 2.83 Å. The potential
well supports 6 bound vibrational levels. The results are
in very good agreement with empirical potentials [11] as
well as calculated ones [12]. This potential has been then
fitted to an analytical form:

V (r) = e−β(r−r0)
n−1∑

k=0

ak(r − r0)k − an
f4(βr)

r4
(1)

where fn(βr) is a damping factor of the form:

fn(βr) = 1 − e−βr
n∑

k=1

rk

k!
(2)

where β = 4.09936 Å−1 and r0 = 2.3 Å. The summation
in equation (1) has 17 parameters and they are given in
Table 1. The last parameter an has been chosen in order to
yield at large distances the correct charge-He polarization
potential −α(He)/2r4 with α(He) = 1.38 a.u.

For He–He interaction, we have used the Tang-
Toennies [13] potential and the sum-of-potentials model
has been employed to generate the overall potential among
partners within each cluster of size N (the number of sol-
vent atoms).

Table 1. Parameters for K+–H interaction.

k ak

1 765.807
2 –923.112
3 –250.866
4 –5031.64
5 21402.7
6 –64537.6
7 129784
8 –182002
9 180048

10 –126624
11 63184.1
12 –22108.9
13 5282.50
14 –818.502
15 73.977
16 –2.961818
17 11875.0

2.2 Classical optimization

Basin hopping Monte Carlo (BMHC) is a global optimiza-
tion algorithm which combines a conjugate gradient opti-
mization with a large-step Monte Carlo simulation [14,15].
For large and especially weakly bound clusters, to find the
global minimum is very difficult because of the exponen-
tially large number of local minima. These minima may
also be separated by large barriers along the phase space.
In order to overcome these barriers, large amplitude moves
are introduced and these trial moves are accepted or re-
jected with Boltzmann probabilities as in the importance
sampling MC. After such moves, a conjugate gradient op-
timization is applied to locate a minimum and form a data
base of local minima. This method has two adjustable con-
trol parameters as the temperature and the amplitude of
atomic displacements.

For complex potential-energy-surfaces (PES), finding
the global minimum from a single trajectory is a difficult
task even for sophisticated methods such as genetic algo-
rithms or BHMC. In particular, escaping from a funnel
in the PES may require either a systematic formation of
a database of minima or running multiple trajectories to
achieve a nearly complete span of the phase space. For
the problem of KHe+

n , there is an additional complication
given by the fact that, even though He–He interaction
is very weak compared to that of K+–He, it still domi-
nates the interactions when the helium atom is far away
from the ion. Consequently, optimization algorithms may
spend a great deal of time trying to optimize He–He in-
teractions. In this work we have devised a growth scheme
to overcome this problem. Each new cluster is generated
by randomly placing a helium atom in the vicinity of the
cluster. Distance of this atom is taken as the radius of
the outermost shell and the angular coordinates are cho-
sen randomly. Minima located from these structures are
added to a database. After running a sufficient number
of trajectories, the lowest energy structure is used to gen-
erate the next one. We have used a simple convergence
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Fig. 2. (a) Variation of energy and (b) its second derivative
with size. E is in cm−1.

criterion where it is assumed that the global minimum is
found if three new sequences do not produce lower energy
structures. In this report, 100 such sequences are gener-
ated up to He70.

3 Results

In Figure 2, we present E/n and d2(E/n)/dn2 for up to
n = 20. Here E denotes the total interaction energy ob-
tained by additive potentials. The second derivative of the
energy calculated from the central difference formula can
be used to identify magic numbers as it compares the en-
ergy of three successive sizes.

One of the interesting aspects of clusters is the strong
size-dependent nature of their physical properties. For ex-
ample, the stability of the global minima may display
an irregular behavior with increasing size. The case of
Lennard-Jones clusters is well documented [16] with a
number of magic sizes. Here, we present various aspects
of the lowest energy structures of KHe+

n clusters to un-
derstand the growth process and the solvation. It is im-
portant to note that, the global minima could be elusive
to optimization techniques even for stable systems. The
structures presented here are obtained from exhaustive
searches over the PES and they should be treated as close
approximations to the global minima.

In Figure 2a, it is seen that the energy per particle
decreases until n = 12 and at this size d2(E/n)/dn2 has a
maximum showing strong stability, almost a magic num-
ber behavior. For n > 12, average energy increases mono-
tonically. Even though Figure 2 gives the impression that
the first solvation shell is completed at 12 atoms, a careful
study of structures shows that the growth of KHe+

n clus-
ters display several features. When a few helium atoms
are present, they form a cluster where the cation rests at
its surface. The largest of these clusters is for n = 8 and
its structure is given in Figure 3.

Fig. 3. The lowest energy structure for KHe+
8 .

Fig. 4. The lowest energy structure for KHe+
12.

All clusters with less than 8 helium atoms have the
same characteristics of this hemispherical structure. At
this size range, helium atoms can still orient themselves
in such a manner that they are both close to the cation and
at the same time they can maximize the number of He–
He contacts. At n = 9, the solvation starts and the new
atoms cause K+ to drift into the droplet. The internuclear
distances between helium atoms and K+ remain around
2.2–3.1 Å. That is, the new atoms are still added to the
first solvation shell. At n = 12, a completely symmetric
shell is formed where all the K+–He distances are equal
at 2.825 Å. The fact that this bond length is very close
to the He–He equilibrium distance allows the formation
of a spherical and highly stable structure. The three axes
of inertia are all equal to each other. This symmetric top
structure is only observed at n = 12 (Fig. 4) and forms
the basis of its stability.

For n = 13–15, new atoms are again added to the
first solvation shell. Helium atoms are no longer occupying
equivalent positions and the shell radius increases slightly.
Only at n = 16, an odd atom resides outside the first
solvation shell.

We proceeded to search for the lowest energy struc-
tures with our growth model until n = 70. The results
can be summarized in the following manner. From analysis
of interatomic distances, we see that the second solvation
shell starts to form around r = 4.2 Å. At this range the
K+–He potential is still strong enough (47 cm−1 compared
to 8 cm−1 for He–He) so a shell structure can be formed.
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Fig. 5. (a) The variation of R(K+–He) in KHe+
70 and (b) its

derivative. Distances are in Å.

However, both the energy and its derivatives with respect
to the size are smoothly varying functions and do not re-
veal any information on the number of atoms involved in
the solvation. It is possible to extract radial-distribution
functions from low energy Molecular Dynamics or a MC
calculations, but we opt instead to analyze the K+–He dis-
tances with increasing cluster size. In Figure 5, an example
of such an analysis is given for n = 70.

The helium-cation interaction is reduced to 5 cm−1

at 7 Å, and it is 1 cm−1 at 9 Å, hence any predictions
outside this range may not be very accurate. However,
the formation of the second and even the third shell is
very clearly recognizable at this figure. A comparison of
such plots for different sizes show that the second shell
can accommodate around 23 helium atoms. The radius of
this shell is around 5 Å. The third shell begins after this
regime but here the interaction with the cation is very
weak and our classical additivity scheme may no longer
be valid. It is difficult to get a good estimate of the size of
this shell. We have continued with the growth scheme up
to n = 100 but their minima usually corresponds to the
configurations that maximize He–He interactions.

We have also analyzed structures of KHe+
n from diffu-

sion Monte Carlo calculations which will be published else-
where [17]. In these calculations, the angular distributions
between He atoms show very strongly localized character

and a striking resemblance to those obtained from our
optimizations. Hence, we believe that it is safe to use the
classical approaches in the presence of charged impurities.

In summary, we have studied the solvation of K+ in
helium droplets and calculated the structural characteris-
tics of the clusters formed in this process. The first two
solvation shells are formed of 15 and 23 helium atoms.
There is some resemblance to a third shell but an accu-
rate determination of it is not possible due to the floppy
nature of the potential at this regime.
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